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Supplementary Information Text 

This Supplementary Information text contains details of  tailoring the artif icial muscles, the 
mathematical model used to describe the jumps and determine the effect of the restriction height, 

as well as details of jumping insects. 

Details of tailoring of the coiled artificial muscles 

Based on the force-displacement curve of  the various snapping configurations, we set two 
conditions to meet these requirements. The first condition is the combination of the maximum force 
and stroke at the point of snap-through. This requirement is assessed by measuring the stroke of 
the muscle in an isobaric test of  that required peak force (constant force test). The second 
requirement is to achieve the maximum force when tested without any pre-load and with 
displacement-constrained ends. The second requirement is checked by an isometric test setup, 
similar to what is commonly performed to test musculoskeletal muscles when a health practitioner 
constrains the displacement produced by the patients' muscles and measures the force that the 
patient can generate under this constraint. To our knowledge, the combination of  these two 
requirements to match a complex force-displacement response of  a mechanism is novel and 
facilitates the process of muscle tailoring for robot needs.  
 
We constrained our actuators' design space to coiled thermally-powered artificial muscles made of 
nylon f ishing lines. We show three examples of muscles tailored for this robot. The f irst muscle is 
a self -coiled muscle made f rom a 1 mm diameter fiber (please see SI for fabrication details). This 
muscle barely meets the f irst requirement, as shown in Fig. 4D, but clearly does not meet the 
second requirement, which precludes its use for the robots. In fact, it became obvious during this 
study that one limitation of the self-coiled artificial muscle is that high preloading is needed to 
separate the coils because of high muscle stiffness. This indicates that a coiled artificial muscle 
with initially separated coils is needed for this mechanical task. This type of coiled muscle is known 
in the literature as mandrel-coiled muscle (32), where the fiber (here fishing line) is initially twisted, 
but instead of self-coiled by twist insertion under a constant load, it is then wrapped around a 
cylindrical core referred to as the mandrel. This creates a muscle with a larger coil diameter and 
hence a large spring index (defined as the ratio between the outer coil diameter and the fiber 
diameter). It is known that larger spring indices muscles have spacing between their coils and 
provide larger stroke but smaller force (measured in isobaric test). Indeed, a mandrel coiled muscle 
having a spring index of 3.26 meets both requirements as shown in Fig. 4D. Four of these muscles, 
called M3 muscles, working in parallel meet the most stringent requirements of robot Sy. These 
muscles are rather heavy (0.52 g total mass), so we attempted to tailor smaller diameter, lighter 
weight M2 muscles, and their performance in Fig. 4D and 4E. However, these muscles will uncoil 
under 4 N of  external load and hence are not suitable for the robots. Overall, the energy capacity 
of  these muscles in this use case is the area under the force-displacement curve, which is 8.78×10-

3 Nm for the Sy robot, corresponding to 4 mJ/g. (We comment further on this energy capacity value 
in the discussion section.)  
 

Details of the Von-Mises truss model 

Equations of motion for different phases 

As shown in Fig. 6A of  the main text, we consider a central mass connected to two springs, 
sandwiched between two larger masses; the central mass and springs represent the beam (mb), 
while the outer masses represent the robot (mr). The jump is latched by pushing the central mass 
to the horizontal position (yb = 0). It then undergoes snap-through, ultimately hitting the substrate 
when 𝑦𝑏 = −𝑑, whereupon the robot starts the main portion of the jump. We neglect the weight of 
the central mass, as it is much lighter than the outer masses (while considering its inertia), but 
incorporate the weight of the outer (larger) masses, which is necessary to ensure that the robot 
does not immediately jump. 
 



 

 

3 
 

The essential ingredients of the model are that each mass is subject to a force from the spring, its 
weight (for the edge masses), and may also be subject to a reaction force from the substrate.  
 

The springs have natural length 
0l  and stiffness k (see Fig. 6A (i)), so that the force they exert 

tangent to themselves is 

 ( ) 
1 2

22

0b rF k w y y l = + − −
 

, (1) 

where w is the distance between the central (beam) mass and the edge (robot) mass (which is also 
the half  distance between edges of the robot) and y b,r are the vertical displacements of the central 
and edge masses, respectively. The horizontal component of the forces from the two springs cancel 
by symmetry; the vertical component gives rise to an equation of motion via Newton’s second law 
applied to the central mass (neglecting its weight), namely: 

 ( )
( )

2

0

1 22 22

2 1b
b b r b

b r

y l
m k y y R

t w y y

 
  

= − − − + 
   + −

  

. (2) 

 
Similarly, for each of the edge masses, Newton’s second law gives: 

 ( )
( )

2

0

1 22 22

1 +r
r b r r r

b r

ly
m k y y m g R

t w y y

 
  

= − − − 
   + −

  

, (3) 

 
where Rb and Rr are the reaction forces from the substrate on each mass. 
 
These equations are to be solved subject to the initial conditions 𝑦𝑏(0) = −𝜖, 𝑦̇𝑏(0) = 0, with the 
reaction forces determined by the constraint that the masses cannot penetrate the substrate, i.e. 
𝑦𝑟 ≥ 0, 𝑦𝑏 ≥−𝑑. Solving this model, we find that there are four stages of the jump: 
 

1. Snap-down: The central mass accelerates towards the floor under the force of the relaxing 
spring (see Fig. 6A (iii)). In this stage, 𝑅𝑏 = 𝑦𝑟 = 0, so that eq. (2) reduces to 

 

( )
0

1 2
2 2

2 1b b b

b

L
m y ky

w y

 
 = − −
 +
 

. (4) 

We non-dimensionalize by letting 
b by w Y=  , 

0L w = , d w =  and t t T=   with time scale

2bt m k = . Then we have 

 

( )

2

1 22 2
1

1

b
b

b

d Y
Y

dT Y


 
 = − −
 +
 

. (5) 

Note that 𝜆 is an aspect ratio parameter characterizing the natural length of the spring compared 
to its length in the latched configuration. For this state to be compressed (rather than stretched), 
we require 𝜆 > 1. We consider a small perturbation applied to the central mass to initiate the snap-
down, i.e., 
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 ( ) ( )0 , 0 0b bY Y= − = . (6) 

A linear stability analysis suggests that for early times: 

 ( ) ( )cosh 1bY T T  − −  . (7) 

Note that if  d is large enough that the system reaches equilibrium 
, 0b eY   with: ( )

1 2
2

,1 b eY = +  

(so that 0Y = ) then the object may not jump at all. Hence, we expect to need 2

, 1b eY = −  

. 

Non-dimensionalizing eq. (3) in the same way as for eq. (2), but further introducing 
r ry w Y=  , 

2rm g kw = , 
r bM m m=  and 2r rR R kw= , we have 

 
( )

( )

2

1 22 2
1

2 1

b rr
r

b r

Y YY
M R

T Y Y




 
−  

= − + − 
   + −

  

. (8) 

Initially, 0rY = , so we have 

 

( )
1 2

2
1

2 1

b
r

b

Y
R

Y




 
 = + −
 +
 

. (9) 

Phase 1 continues until 0rR = , at which point the reaction force would have to become negative 

to maintain Yr = 0; since the substrate is not adhesive, instead the edge masses begin to jump, i.e., 
Yr > 0, Rr = 0. This is the beginning of Phase 2 of the motion and occurs when 

,b b jumpY Y=  with 

 

( )
1 2

2
, ,

2
1

1b jump b jump
Y Y

 
= −

+
. (10) 

By solving this equation numerically for given parameters   and  , we can determine 
,b jumpY , 

and therefore find that 
jumpT T=  at 

,b jumpY Y= . 

 

2. Ghost jump: As the central mass accelerates downwards, but before it contacts the 
substrate, the outer masses are slightly lifted off the ground (see Fig. 6A (iv)). In this second phase 
of  the motion, Rb = Rr = 0 with Yb and Yr non-zero. (We shall see that in general this motion is a 
slow acceleration and is short-lived, so it may be neglected in our analytical work; we nevertheless 
include it for completeness.) 

 

Both central and edge masses are moving (but in different directions). For the central mass, 

 ( )
( )

2

1 22 2
1

1

b
b r

b r

d Y
Y Y

dT Y Y


 
 

= − − − 
  + −
  

 (11) 
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and, for the edge masses, 

 ( )
( )

2

1 22 2

1
1

2 1

r
b r

b r

d Y
M Y Y

dT Y Y




 
 

= − − − 
  + −
  

. (12) 

Equations (11) and (12) are to be solved with ( ) ( )b jump b jumpY T Y T− += , ( ) ( )b jump b jumpY T Y T− +=  and 

( ) ( ) 0r jump r jumpY T Y T− −= = . This is expected to hold until 
bY = − , at some 

contact cT T T= =  at 

which point the central mass hits the substrate; then Rb > 0 to prevent penetration of the substrate 
and Phase 3 begins. 

 

3. Driven jump: Once the central mass contacts the f loor, the outer masses begin a more 
concerted jump, since the full force of the spring is now acting to push them upwards (the central 

mass can no longer move, i.e. 
bY = − ) (see Fig. 6A (v)). In this phase, Rr = 0 is still fixed (since 

the outer masses remain out of contact with the floor). 

 

Now it is just Yr that is evolving, so that 

 ( )
( )

2

1 22 2

1
1

2 1

r
r

r

d Y
M Y

dT Y




 
 

= − + − − 
  +  +
  

, (13) 

with ( ) ( )r c r cY T Y T− += , ( ) ( )r c r cY T Y T− += . In this phase, the spring is relaxing towards its natural 

length and, in so doing, lifting the edges of the robot further off the ground. This phase continues 
as long as Rr > 0, which in turn requires that the spring remains compressed, i.e. 

 ( )
( )

1 2
2

1 0

1
r

r

Y

Y


 
 

 + −  
  + +
  

. (14) 

So, phase 3 ends when 

 
2

,1r r take offY Y −= − − = . (15) 

At this point, the central mass would require an adhesive contact force to stay in touch with the 
substrate and (in its absence) instead takes off. 

 

4. Total loss of contact: Once Rr = Rb = 0, the whole robot (both central and outer masses) 
has lost contact with the substrate and therefore takes off from the f loor (see Fig. 6A (vi)). In this 
phase, the robot is subject just to the external force of gravity and so behaves as a projectile, albeit 
with a weak oscillation induced by the tension and compression of the spring.  

 

Both central and edge masses are moving again, so we have 
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 ( )
( )

2

1 22 2
1

1

b
b r

b r

d Y
Y Y

dT Y Y


 
 

= − − − 
  + −
  

 (16) 

and 

 ( )
( )

2

1 22 2

1
1

2 1

r
b r

b r

d Y
M Y Y

dT Y Y




 
 

= − − − 
  + −
  

. (17) 

Equations (16) and (17) are to be solved with ( ) ( )_ _r take off r take offY T Y T− += , 

( ) ( )_ _r take off r take offY T Y T− +=  and ( ) ( )_ ; 0b take off b jumpY T Y T− −= − = . This phase is expected to hold 

until 0Y =  Y=0 again (at which point the robot lands). 

 

By applying appropriate initial conditions, we can solve the motion equations at different stages in 
turn to quantitatively predict the jumping motion. More specifically, at each stage, the differential 
equations of motion can be solved numerically by employing the routine ode15s in Matlab. All the 
(physical and geometric) parameters are measured f rom experiments (as given in Table S1), 
except for the spring stiffness. The approximate value of the stiffness can be estimated by equating 
the stored energy in the latched state of the model system with that in the real robot: we assume 
the maximum energy in the von-Mises truss is equal to the elastic energy stored in the beam when 
the snapping beam passes the critical (fold) point. Since we are considering four designs of robot 
in experiments with different physical and geometric parameters, we treated the exact value of the 
spring stiffness as a single fitting parameter for all four robots (Fig. 6 B and C). This fit is performed 
once for all, with the value of k fixed as the restriction height changes. 

 

Analytical results for Phase 3 

In Phase 3, 
bY = −  is fixed and so we are able to make some analytical progress in determining, 

in particular, the evolution of the edge heights and the final jumping speed. We have that (recalling 
eq. (13)) 

 ( )
( )

2

1 22 2

1
1

2 1

r
r

r

d Y
M Y

dT Y




 
 

= − + − − 
  +  +
  

. (18) 

To simplify the problem, we assume that the edges have not moved significantly by the start of  

phase 3, i.e. ( ) ( ) 0r c r cY T Y T  , corresponding to no significant acceleration in Phase 2. 

For notational convenience, we let 
r rY Y= + , so that 

 

( )

2

1 22
2

1
1

2 1

r
r

b

d Y
M Y

dT Y




 
 

= − − − 
+  

, (19) 

with ( )r cY T − =  , ( ) 0r cY T − = . 
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We can proceed by multiplying through by 
rdY dT  and integrating, which gives, 

 ( ) ( )
2

1 2 1 2
2 2 2 21 1 1 1 1

1 1
2 2 4 2 4

r
r r r

dY
M Y Y Y

dT
   

   
= + − − − + −  −    

  
. (20) 

Recalling from the earlier analysis that take-off of the edge masses happens when the spring is no 

longer stretched, i.e., 
2 1crit

r rY Y = = − −  or 
2 1Y = − , we f ind that the final jump speed 

satisfies 

 ( ) ( )2 2 2 2 21
1 1 2 1

2
jumpV M    

  = − +  − − − − − −   
, (21) 

where Vjump is the non-dimensional velocity, which is related to the dimensional velocity through 

 
jump jump

w
v V

t
=   (22) 

with 2bt m k =  as a time scale as we def ined before. By combining Eq. (21) and (22) and 

recalling the various dimensionless parameters that have been introduced, we can therefore obtain 
the dimensional velocity with respect to the restriction height, i.e.,  

 ( ) ( )
2 2

2 2 2 2 2 2 2 2

0 0 0 0 0 0

2 1
2

2
jump R R R

r

k
v l l w l w h l w l w h h

m


    
=  − + − − − − − − − −    

    

, (23) 

This expression agrees well with numerical results of  the full model as presented in the paper, 
despite the neglect of  the 'ghost jump’ phase of  the motion. In particular, we f ind that the 
dependence of take-off velocity v jump on restriction height hR tends to be linear as hR → 0, while 
vjump → const when hR → h0. To understand this better, we seek insight f rom an energetic 
perspective. For small restriction heights (hR → 0), contact occurs well af ter snap-through; the 
kinetic energy of the beam at the moment of impact is dissipated and we therefore suppose that 
only the elastic energy remaining in the buckled beam at the moment of collision is transferred to 
kinetic energy of the robot, i.e.,  

 ( )
2

2 2 2

0

1 1
2 2

2 2
r jumpm v k l d w =  − + , (24) 

where 
0 Rd h h= − . We can therefore simplify this equation as 

 
0

0

jump R R

r

hk
v h h

m l
    (25) 

Conversely, for large restriction heights (hR → h0), contact occurs almost immediately after snap-
through and so all the elastic energy initially stored in the buckled beam is transferred into the robot 
as kinetic energy,  

 ( )
22

0

1 1
2 2

2 2
r jumpm v k l w =  − , so (26) 

                                             ( )0jump

r

k
v l w const

m
 − .                                 (27) 
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These intuitive results are recovered as the appropriate limits of equation (23). 
 
Alternative model to analyze the robot's jumping: a simple linear harmonic oscillator 
 
We investigate the use of a simple linear harmonic oscillator as an alternative model to analyze the 
robot's jumping (Fig. S5A). The robot is modeled by two masses vertically connected by a spring. 
The lower mass mb and the spring represent the buckling beam, but taken to be a linear spring. 
The upper mass mr is equivalent to the mass of the robot body. The model assumes a massless 
spring. At the initial state, both mr and mb are f ixed such that the spring is compressed by a 
displacement D, representing the equivalent compression of the buckled beam. The distance 
between mb and the ground is H. The jump is initiated by releasing mb, while keeping mr fixed, and 
the process of jumping evolves through two distinct phases, as illustrated schematically in Fig. S5B. 
 

1. Lower mass snapping: The motion begins when mb is released by removing a trigger. 
During this phase, the robot mass (mr) is still fixed at its initial position by an external force, 
and the restoring force of the spring pushes mb downwards towards the ground. This phase 
corresponds to Phase 1 in the Von Mises truss model, when the central mass is snapping 
downwards. The parameters are selected such that mb reaches the ground while the spring 
is still compressed.  
 

2. Driven jump: At the instance of collision between mb and the ground, the constraint on mr 
is removed. The robot mass mr has a high instantaneous acceleration due to the sudden 
removal of  the constraint, and begins moving upwards due to the restoring force of the 
compressed spring during collision. This collision process is similar to Phase 3 (driven 
jump) defined in the Von Mises truss model.  
 

3. Total loss of contact: The entire assembly (both mr and mb) takes off from the ground when 
mb fully rebounds after collision. The assembly then follows an upwards projectile motion, 
and this phase is similar to Phase 4 in the Von Mises truss model. 

 
The equation of motion of mb for phase 1 can be expressed as  
 

y
b 
(t)=(D+

mbg

k
)cos(ωbt),                                                       (28) 

 
where mb is the beam mass, yb is the displacement of mb, D is the compression of the spring, and 
k is the spring constant.  
 
The beam mass mb hits the ground with a pre-collision velocity of v0. It remains on the ground for 
a collision time tc and rebounds with another velocity by a coefficient of restitution (COR) due to 
energy loss during the collision. This impulse makes a significant impact in pushing against the 
ground and propelling the robot into the air. During the collision process, the equation of motion of 
the robot mass mb can be expressed as 
 

y
r 
(t)=(L −

mrg

k
+

mbg

k
+D− H)(

αr

ωr
) (D −H−

mrg

k
)cos(ωrtc),                                                    (29) 

 
where mr is the robot mass, yr is the displacement of mr , D is the compression of the spring, L is 
the original length of the spring, H is the distance between mb and the ground at the initial state 

before phase 1 starts, k is the spring constant, and α𝑟=√
k

mr
. 

 
Af ter total loss of contact with the ground, the robot experiences a constant gravitational force. 
Neglecting subsequent oscillations of the spring, the two masses will move up together until they 
reach the maximum jumping height. The center of  mass movement af ter takeoff can be obtained 
as 
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 Y(t) = Y0 +V0t'−
1

2
g(t')2,                                                                                                                      (30) 

 

where Y=
mryr

M
+

mbyb

M
 is the position of the entire system written in the center-of-mass coordinates, 

M = mr+mb is the total mass, Y0 is the position of the system at the end of the collision, V0 =
mr

M
v0 is 

the velocity of the system at the end of the collision, and v0 is the end velocity of mb af ter rebounding 
f rom collision. 
 
We compare the acceleration evolution of the simple harmonic model with that of the more accurate 
Von Mises truss model and experimental measurements in Fig. S5B. An accurate feature of the 
Von Mises truss model is its ability to capture the sharp but continuous rise in the robot's 
acceleration during the lower's mass collision with the ground. The simple harmonic model has a 
discontinuous acceleration that starts at the maximum value because the constraint which fixes mr 
is removed at the instant when collision starts. At t = 0 in Fig. S5B, the upper mass mr is only 
subjected to the spring force and its own gravity due to sudden removal of the constraint. Moreover, 
the evolution of the acceleration, namely the convex decrease during takeoff, can be captured by 
the Von Mises truss model. Unfortunately, our high-speed camera system did not allow accurate 
noise-f ree measurement of this acceleration.  
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Fig. S1. Snapshots of the takeoff sequence of an Alaus oculatus click beetle. The snapshots 
show the extremely fast unbending movement which results in the center of mass acceleration and 
legless jump. The mass of the click beetle is 754 mg, and the body length is 31 mm. 
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The key steps of our evolutionary design are shown in Fig. S2, and described below. 

 

Fig. S2. Evolutionary design approach. Key steps in the evolution of our robot are indicated 
by numbers as follows: 

(1) The f irst jumping robot design, which originated f rom the initial concept, consists of a sliding 
bar, a pair of artificial muscles, and a buckling beam, triggered by the translation of the two clamps 
due to the compressive force of the muscles. 

(2) Jumping robot design with a triggering mechanism based on the rotation of the two ends of the 
buckled beam instead of translation. 

(2.1) Design that evolved from (2). Protrusions parallel and near the ends of the beam are used to 
push the beams and trigger snap-through at a smaller angle of  clamp rotation and hence 
accommodating smaller muscle stroke. 

(3) Jumping robot design without sliding bar but with a fixed bendable bar. When the robot body is 
bent by the compressive stroke of the muscle, the buckled beam is rotated f rom its two ends until 
snap-through. 
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(3.1) The bendable bar is thickened and re-designed to avoid fracture upon bending. The buckled 
beam has a symmetrical shape to store more energy. Mandrel-coiled artificial muscles are used to 
provide larger force and stroke. 

(3.2) Other robot designs evolved from (3). The robots are fabricated using more flexible materials. 

(4) Jumping robot design with a single-side sliding mechanism to compress the beam and trigger 
snap-through. The length of the robot is also shortened compared to (1) to achieve a smaller 
footprint robot design.  

(4.1) The bottom of the sliding bar has an inclined surface. Upon actuating the artif icial muscles, 
the upper side of the robot body will shrink more than the lower side, triggering the snap-through 
of  the buckled beam. A rotational block is added to push and help triggering snap-through. 

(4.2) A bent sliding bar is added to guide the rotation of the small block. 

(4.2.1) A rounded corner is designed to replace the bent sliding bar, which rotates the small block 
and triggers snap-through during compression. 

(4.2.2) A protrusion is designed to replace the rounded corner for tailoring snap-through. 

(4.2.3) The size and weight of the robot are reduced. Inclined beam clamping is introduced to 
ensure the beam can buckle upwards upon compression. 

(4.3.4) A small protrusion is designed on the inclined beam clamping to introduce initial bending to 
the beams before compression. This is to ensure the beam can always buckle upwards for 
consecutive jumping. 

(4.2.5) A top beam is introduced to restore energy for consecutive jumping. 

(4.2.6) An architected spring is introduced to restore energy for consecutive actuation.  

(4.3) Four mandrel-coiled artificial muscles are used to compress the beam. The beam is able to 
be compressed from its energy-free state. The sliding bar is designed to be thinner to reduce the 
self -weight of the jumping robot.  

 
  



 

 

13 
 

 

 

Figure S3. Displacement (A) and velocity (B) of the central point of the buckled beam during 
the snap-through process for all four cases. For cases with asymmetrical beams, both 
displacement and velocity were measured by tracking the points that reach the ground last. For 
cases with symmetrical beams, displacement and velocity were measured for the points which hit 
the ground first. 

  

A B 
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Figure S4. Plot of stroke versus temperature of the artificial muscle. The muscle was made of 
1 mm f ishing line. The original length of the muscle is 27 mm with a constant load of 200 g fixed at 
one end. 

  



 

 

15 
 

 

Figure S5. Reduced-order model of the robot jumping mechanism using a linear mass-
spring oscillator. (A) Schematic of the linear mass-spring oscillator model used to analyze the 
robot jumping mechanism. This model uses rigid holders, shown in orange, that constrain the 
motion of the masses while the energy is stored in the spring (left frame), then release and trigger 
the motion of mb, while still constraining mr in phase 1, and then release mr when collision takes 
place. (B) Comparison between the measured acceleration of the robot as a function of jumping 
displacement with that predicted by the Von-Mises truss model and the spring-mass model. 
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Figure S6. 2D views of the four robot designs (front view, side view, top view). 
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Table S1. Design parameters of all four jumping robots. 

 

Robot 
Robot weight 

[g] 
Robot size 

[mm] 
No. of 

muscles 
Beam size 

[mm] 
Beam weight 

[g] 
AsP 1.66 23.5×14×11 2 25.5×6.4×0.0508 0.063 
SyP 1.68 26×17×9.8 2 15.9×6.6×0.0508 0.062 
As 1.83 22×13.5×10 4 16.3×6.5×0.0508 0.050 
Sy 1.58 21.5×10×10.5 4 15.7×5.3×0.0508 0.061 
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Table S2. Parameters and jumping performance of small-size jumping robots in the literature. 

 

S/N 
Body 

length 
[mm] 

Jump Height 
 [m] 

Acceleration 
[m/s2] 

Body Weight  
[g] 

Reference 

1 25 0.1 42.5 22 (16) 

2 75 0.87 - 26.5 (44) 

3 90 1.44 - 25 (15) 

4 130 3.35 - 23 (45) 

5 120 1.5 750 99 (46) 

6 150 1.25 140 98 (14) 

7 90 0.21 - 54.1 (42) 

8 50 1.4 397.33 7 (43) 

9 20 0.142 138 0.068 (48) 

10 23 0.64 500 1.1 (47) 

11 41 0.15 - 18 (41) 
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Table S3.  Parameters and jumping performance of jumping robots in this work. 

 

Robot 
Body length 

[mm] 
Jump Height 

[m] 
Acceleration 

[m/s2] 
Body Weight  

[g] 

AsP 23.5 220 931 1.66 

As 22 50 227 1.83 

Sy 21.5 170 482 1.58 

SyP 23.1 237 1471 1.68 

Syp+2 23.1 279 1574 1.686 

SyP+3 23.1 406 1899 1.692 

SyP+4 23.1 712 2156 1.698 

SyP+5 23.1 893 2414 1.704 
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Table S4. Parameters and jumping performance of insects in the literature. 

Insect Name 
Body 

Length 
[mm] 

Jumping 
Height  
[mm] 

 Acceleration 
[m/s2] 

 Body 
weight 
 [mg] 

Reference 

Philaenus Spumarius 
f roghopper 

6.1 428 2800 12.3 (3) 

Archaeopsyllus erinacei 
f lea 

1.8 34 1600 0.7 (9) 

Snow Flea (Male) 3.4 19 121 2.9 

(4) 

Snow Flea (Female) 4.2 17 161 4.2 

Aphrodes makarovi 
leafhopper 

8.5 115 1055 18.4 

Saldula saltatoria 
Shore Bug 

3.5 53 529 2.1 

Ulopa 3.1 127 2300 2.1 
(10) 

Cephalelus 13.4 90 1000 9.2 

Publilia concava 
(Female) treehopper 

4.7 126 1500 4.5 

(37) 

Publilia concava (male)  
treehopper 

4.1 195 1690 3.8 

Entylia carinata 
(Female)  treehopper 

4.6 128 1750 5.9 

Entylia carinata (male)  
treehopper 

4.2 170 2080 4.8 

Campylenchia 
latipes(Female) 

treehopper 
7.8 85 1230 10.3 

Sextius sp treehopper 6.9 108 1220 18.7 

Carynota marmorata 
treehopper 

7.2 177 960 25 

Stictocephala bisonia 
treehopper 

7.8 135 770 26.8 

Ceresa basalis 
treehopper 

6.9 72 590 28.5 

Telamona compacta 
treehopper 

8.4 80 560 41 

Panorpa 
communis(Female) Fly 

15.1 46 95.5 39.7 
(38) 

Panorpa 
communis(male) Fly 

13.2 46 65.5 26.7 

Idaea seriata small 
dusty wave moth 

6.8 19 88 4.6 

(39) 

Hofmannophila 
pseudospretella brown 

house-moth 
9.1 33 71 5.4 

Acleris sparsana ashy 
button moth 

7 27 40 6.3 

Epiphyas postvittana 
light brown apple moth 

7 34 92 7.7 
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Crambus pascuella 
grass veneer moth 

9.2 24 37 11.9 

Camptogramma 
bilineata yellow shell 

moth 
10.3 49 61  - 

Xanthorhoe fluctuate 
garden carpe moth 

10 47 57 17.4 

Udea olivalis olive pearl 
moth 

10.8 44 42 19.1 

Apamea lithoxylaea 
light arches moth 

18.3 26 29 220.9 

Microtechnites 
bractatus (female) mirid 

2.7 24 35 3.4 

(40) 

Orthocephalus saltator 
mirid 

3.2 9 76 4.4 

Phytocoris 
varipes(male) mirid 

5.6 27 85 7.9 

Phytocoris 
varipes(female) mirid 

6.4 36 99 12.2 

Plagiognathus sp mirid 3.9 18 63 2.2 

Tettigoniidae Locust 35 230 -  420 (11) 

Click beetle 20.3 300 3724 200 (35) 

L. biguttatus 5.22 14.2 179 1.3 (36) 

Trap jaw ants mean ~10 73 4720 13.5 

(1) Trap jaw ants max ~10 83 8800 12.1 

Trap jaw ants min ~10 61 2410 14.9 
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Table S5. Mass distribution of the untethered jumping robot. 

Total (g) PCB  (g) Battery (g) Frame (g) 
Sensor 

Circuit (g) 
Muscle (g) Beams (g) 

13.561 7.535 3.011 1.139 0.862 0.758 0.256 

 
 

Autonomy of miniature jumping robots 

Inspired by the definitions of “full self-driving” issued by the Society of Automotive Engineers SAE 
J3016, the robots described in this paper are autonomous, but not yet “fully autonomous”. The SAE 
def ines 6 levels of autonomy for self-driving vehicles, starting from Level 0 - no automation; to Level 
1 - hands on/shared control; and going up all the way to Level 5, where the existence of a steering 
wheel is considered optional in future vehicles. We propose definitions of the levels of autonomy of 
insect-scale robots in Table S6.  
 

Table S6. The levels of autonomy of insect-scale robots. 

Autonomy 

Level for 

jumping 

robots 

0 1 2 3 4 5 

Function 
On board 

power 

Self- 

generated 

elastic 

energy 

On-board 

sensing 

On-board 

command 

Re-

orientation 

Consecutive 

jumps 

Robots  in this 

manuscript 
Yes Yes Yes Yes No Partial 

 

Evolution versus Trial-and-error in the Design Process 

Our design process used features that are similar to both trial-and-error as well as evolution (natural 
selection). In trial-and-error design process, a new trial is typically directed by knowledge acquired 
in the previous iteration. For instance, if the actuator is found by the researchers to be inadequate 
or too weak, a new stronger actuator is used in the next iteration. The next trial is directed by 
empirical observations made based on the failure of  the previous generations, and hence is not 
entirely random, which sets it apart from a mutation in natural evolution. On the other hand, when 
a new trial is successful, the new feature is maintained in the following mutation which indicates 
that future generations inherit these survival and fitness traits – a common element of both the trial-
and-error approach and natural evolution. Survival is defined by the robot ability to jump (binary) 
and not f racture (also binary). 
 
The design process used in this study has two other elements reminiscent of natural evolution, and 
uncommon in engineering trial-and-error. First, the starting seeds were randomly selected and 
hence had unpredictable performance. As shown in Fig. 2 of  the main text, we started with an 
abstract concept of  a robot having three components: a deformable robot body of  arbitrary 
geometry, a coiled artificial muscle actuator, and an elastic energy storing component. Inspired by 
evolutionary processes observed in nature, we considered four randomly selected initial 
conf igurations. Like evolution, these initial seeds, or phenotypes, were not initially directed because 
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the complexity of the nonlinear mechanics and multi-physics of buckling, snap-through and fracture 
mechanics prohibited the performance predictability, especially  those which would result af ter 
many trial-and-error cycles. The second element that is similar to natural evolution is the use of the 
same constituent components types throughout the trial-and-error process. No new components 
were added between iterations, which evolution would not typically do either. These components 
have tunable properties (e.g. the morphology of  the beam, the muscle and the ro bot) which 
contributes to the ability of evolving this specific trait, similar the process of trait passing in natural 
evolution. These ideas are summarized in Table S7. 
 
Table S7.  Comparison among natural evolutionary processes, trial-and-error design methods, and 
our robot design process. 
 

Development 
process 

Natural 
evolutionary 
processes 

Trial-and-error 
design methods 

Robot Design 

Initial seed Random 
Guided/based on 

knowledge 
Randoma 

Fitness landscape Unpredictable 
Moderately 
predictable 

Unpredictable 

Mutation Random Guided/directed 
Partially 

guided/directed; 
Partially randomb 

Rate of trait 
passing (selection) 

Rate of  survival and 
reproduction 

Error f rom target 
Rate of  survival and 

reproductionC 

New generation Inherits f itness traits Inherits f itness traits Inherits f itness traits 

  
a Morphology and parameters of the design were selected randomly 
bThe robot with the central bending bar or the robot with the clamps rotation were not initially 
designed to have this elasticity, it was observed coincidently due overheating (environmental effect) 
and it was subsequently maintained due to the jumping performance associated with it (fitness) 
cRate of  survival and reproduction in the robots: survival is literally defined by robots which jump 
and not f racture; reproduction is defined as the ability of this trait (e.g. robot body, muscle, energy 
storing element) to being tunable. 
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Movie S1 (separate file). Jumping of SyP and SyP+ and high-speed camera close-up view of 
SyP jumping.  

Movie S2 (separate file). Multiple jumping demonstration of Sy and a close-up of high-speed 
jumping of Sy. 

Movie S3 (separate file). Jumping of SyP with electrically triggered muscles. 

Movie S4 (separate file). Jumping of As and AsP, followed by high-speed camera close-up 
views of the robots.  

Movie S5 (separate file). Tensile test and force-displacement relations of the four robots.  

Movie S6 (separate file). Untethered jumping triggered by light stimuli. The vertical scale bar on 
the right represents the temperature. 


